• Home
  • Science
  • Science News
  • NASA's Dawn Mission Unveils Insights into Vesta’s Mysterious Gullies Using Lab Simulations

NASA's Dawn Mission Unveils Insights into Vesta’s Mysterious Gullies Using Lab Simulations

Lab experiments conducted at NASA’s JPL shed new light on how Vesta’s surface may have been shaped by brief water flows.

NASA's Dawn Mission Unveils Insights into Vesta’s Mysterious Gullies Using Lab Simulations

Photo Credit: NASA/JPL-Caltech/UCLA/MPS/DLR/IDA

NASA’s Dawn mission to the asteroid Vesta revealed mysterious gullies on its surface.

Highlights
  • NASA’s Dawn spacecraft investigates asteroid Vesta’s gullies
  • Lab tests reveal how water may have shaped Vesta’s surface
  • Findings challenge ideas about liquid flow on airless bodies
Advertisement

NASA's Dawn spacecraft, which orbited the asteroid Vesta in 2012, captured images of mysterious gullies on its surface, raising questions about their origins. The asteroid, known for its craters, also features channels that seem to contradict the harsh vacuum conditions of space. According to a study, researchers have proposed that brief liquid flows, possibly resulting from briny water, might explain these formations. Lab experiments have been conducted to simulate the conditions, shedding light on a process previously unconfirmed.

Simulating Vesta's Environment

The study was published in the Planetary Science Journal. As per the official blog of NASA, researchers at NASA's Jet Propulsion Laboratory (JPL) used the Dirty Under-vacuum Simulation Testbed for Icy Environments (DUSTIE) to replicate conditions on Vesta following meteoroid impacts. These experiments revealed that while pure water freezes almost instantly in vacuum conditions, salty liquids remain fluid for longer periods. Lead author Michael J. Poston of the Southwest Research Institute noted in a statement that briny solutions could remain liquid for up to an hour, sufficient to create the observed gullies.

Brine Deposits as a Key Factor

The study explored the possibility that impacts on Vesta exposed subsurface brine, causing temporary flows before freezing. According to Jennifer Scully, planetary scientist at JPL, in a statement, impacts could trigger the release of liquid, which would remain active long enough to carve surface features. Speaking to reporters, Scully highlighted that frozen "lids" formed on brines stabilised the liquid beneath, enabling it to flow for extended periods.

Insights Beyond Vesta

The findings align with observations of other celestial bodies, such as Mars and Jupiter's moon Europa, where similar processes might occur. The research also builds on discoveries made during the Dawn mission, which indicated the presence of brines on Ceres, another body in the asteroid belt. While frozen brine on Vesta has yet to be confirmed, these experiments suggest new possibilities for understanding the geologic activity on airless worlds.

 

Comments

For the latest tech news and reviews, follow Gadgets 360 on X, Facebook, WhatsApp, Threads and Google News. For the latest videos on gadgets and tech, subscribe to our YouTube channel. If you want to know everything about top influencers, follow our in-house Who'sThat360 on Instagram and YouTube.

Gadgets 360 Staff
The resident bot. If you email me, a human will respond. More
Oppo Find X8 Ultra Periscope Telephoto Camera Details Leaked Online
Projectors Cannot Replace Smart TVs, Says SPPL's Founder Avneet Singh Marwah
Facebook Gadgets360 Twitter Share Tweet Snapchat LinkedIn Reddit Comment google-newsGoogle News

Advertisement

Follow Us
© Copyright Red Pixels Ventures Limited 2024. All rights reserved.
Trending Products »
Latest Tech News »