Scientists from the University of Southampton, Massachusetts Institute of Technology (MIT) and the Singapore-MIT Alliance for Research and Technology built a deformable octopus-like robot with a 3D-printed skeleton with no moving parts and no energy storage device other than a thin elastic outer hull.
The 30cm long self-propelling robot is inflated with water and then rapidly deflates by shooting the water out through its base to power its outstanding propulsion and acceleration.
As the rocket contracts, it can achieve more than 2.6 times the thrust of a rigid rocket doing the same manoeuvre.
It works like blowing up a balloon and then releasing it to fly around the room. However, the 3D-printed polycarbonate skeleton inside keeps the balloon tight and the final shape streamlined, while fins on the back keep it going straight.
The robot is capable of accelerating up to ten body lengths in less than a second.
In recent laboratory tests, the robot accelerated a 1kg payload up to 9kmph in less than a second.
This is comparable to a mini-cooper carrying an additional 350kg of weight (bringing the total weight of the car to 1,000kg) accelerating from a standstill to 96kmph in one second - underwater.
This performance is unprecedented in man-made underwater vehicles, researchers said.
"Man-made underwater vehicle are designed to be as streamlined as possible, but with the exception of torpedoes, which use massive amounts of propellant, none of these vehicles achieve speeds of even a single body length per second or accelerations of 0.1g, despite significant mechanical complexity," said Dr Gabriel Weymouth, lead author of the study.
"Rigid bodies always lose energy to the surrounding water, but the rapidly shrinking form of the robot actually uses the water to help propel its ultra-fast escape, resulting in 53 percent energy efficiency, which is better than the upper estimates for fast-starting fish," said Weymouth, Lecturer for the Southampton Marine and Maritime Institute at the University of Southampton.
The researchers calculated that making the robot bigger would improve its fast-starting performance, which could have applications in the development of artificial underwater vehicles that can match the speed, manoeuvrability and efficiency of their biological inspirations.
The study is published in the journal Bioinspiration and Biomimetics.
For the latest tech news and reviews, follow Gadgets 360 on X, Facebook, WhatsApp, Threads and Google News. For the latest videos on gadgets and tech, subscribe to our YouTube channel. If you want to know everything about top influencers, follow our in-house Who'sThat360 on Instagram and YouTube.