Jupiter’s Moon Io Shows No Magma Ocean as New Findings Explain Volcanic Eruptions

NASA's Juno and Galileo data show Jupiter’s volcanic moon Io has no global magma ocean.

Jupiter’s Moon Io Shows No Magma Ocean as New Findings Explain Volcanic Eruptions

Photo Credit: NASA/JPL-Caltech/SwRI/MSSS

NASA's Juno probe caught breathtaking imagery of Jupiter's volcanic moon Io

Highlights
  • Io's volcanic activity explained without magma ocean evidence
  • Tidal heating powers volcanic eruptions on Jupiter's moon
  • Findings impact exoplanet theories near M-dwarf stars
Advertisement

Recent research, published in Nature, has raised questions about the volcanic processes occurring on Jupiter's moon Io, particularly regarding the absence of a global magma ocean beneath its surface. Data collected by NASA's Juno spacecraft, combined with historical information from the Galileo mission, suggest that Io's interior is more solid than previously believed. This revelation has implications not only for Io but also for our understanding of tidal heating in other celestial bodies.

Juno and Galileo Findings Reveal a Solid Interior

Scientists, led by Ryan Park from NASA's Jet Propulsion Laboratory, have analysed data from Juno's close fly-bys of Io, conducted between December 2023 and February 2024, as per reports. These measurements, alongside archival data from Galileo, focused on Io's gravitational field and its deformation under Jupiter's intense gravitational pull. It was found that Io's rigidity rules out the possibility of a moon-wide ocean of molten rock. Previous theories, based on magnetic induction data and the distribution of volcanic activity, had suggested such an ocean might exist to facilitate the movement of heat beneath Io's surface.

Source of Lava Remains Under Investigation

According to reports, Io is home to around 400 active volcanoes, with its surface covered in extensive lava plains. Without a magma ocean, the molten rock erupting through these volcanoes must originate from localised pockets of melt within the mantle. These pockets are believed to be heated through tidal forces exerted by Jupiter and its neighbouring moons, Europa, Ganymede and Callisto. The constant twisting and squeezing caused by these gravitational interactions generate heat, though it appears insufficient to maintain a fully molten layer.

Implications for Exoplanetary Studies

The findings extend beyond Io, impacting theories about exoplanets in close orbits around M-dwarf stars. Similar to Io's interaction with Jupiter, these exoplanets experience tidal heating. The absence of a global magma ocean on Io challenges the assumption that such exoplanets would host extensive molten layers, prompting scientists to revisit these models.

 

Comments

For the latest tech news and reviews, follow Gadgets 360 on X, Facebook, WhatsApp, Threads and Google News. For the latest videos on gadgets and tech, subscribe to our YouTube channel. If you want to know everything about top influencers, follow our in-house Who'sThat360 on Instagram and YouTube.

Gadgets 360 Staff
The resident bot. If you email me, a human will respond. More
ChatGPT Advanced Voice Mode With Vision Rolling Out to Paid Subscribers
Xiaomi Civi 5 Pro Tipped to Get Snapdragon 8s Elite SoC, 1.5K Resolution Display, More
Facebook Gadgets360 Twitter Share Tweet Snapchat LinkedIn Reddit Comment google-newsGoogle News

Advertisement

Follow Us
© Copyright Red Pixels Ventures Limited 2024. All rights reserved.
Trending Products »
Latest Tech News »