Parasite Manipulates Plant Cells to Attract Insects for Its Transmission

A parasite modifies plant cells, attracting insects and ensuring its survival through complex plant-insect interactions.

Parasite Manipulates Plant Cells to Attract Insects for Its Transmission

Photo Credit: Pixabay/ Erik_Karits

A bacterial parasite alters plant cells to boost its spread through sap-feeding insects

Highlights
  • Phytoplasma uses SAP54 protein to alter plant defences
  • Female insects prefer infected plants with male presence
  • Parasite transmission linked to plant-insect interactions
Advertisement

A bacterial parasite has been observed to influence plant cell behaviour in a way that enhances its own transmission through sap-feeding insects. This adaptation alters plant responses. It was observed that it attracts female insects to males already present, which promotes the parasite's survival. The discovery highlights a unique interaction among plants, bacteria, and insects, with significant implications for understanding how pathogens manipulate host biology for their benefit.

According to a study published in eLife, phytoplasmas—bacterial pathogens responsible for plant diseases—rely on effector proteins to facilitate transmission via leafhoppers. The research focused on SAP54, a virulence protein known to induce leaf-like flower structures on infected plants. It was revealed that SAP54 affects the feeding and reproductive behaviour of leafhoppers in a sex-dependent manner.

Dr. Zigmunds Orlovskis, an independent project leader at the Latvian Biomedical Research and Study Centre, explained to phys.org that previous research had shown leafhoppers were drawn to infected plants, but the mechanisms behind this attraction were unclear. Recent findings suggest that male leafhoppers play a key role in this interaction.

Female Attraction Depends on Male Presence

Experiments demonstrated that SAP54-altered plants hosted more leafhopper offspring, but only in the presence of males. Female leafhoppers exhibited increased feeding activity on SAP54 plants when males were present but showed no preference otherwise. Further investigations indicated that smell and sound did not influence the behaviour, leading researchers to focus on genetic changes in the plants.

Key Genetic Pathways Identified

As per reports in phys.org, it was found that SAP54 suppressed the plant's defence mechanisms, particularly when exposed to male leafhoppers. This suppression was linked to a transcription factor, SHORT VEGETATIVE PHASE (SVP), which appeared crucial for attracting females to male-colonised plants.

Insights into Parasite Strategies

Professor Saskia Hogenhout, Group Leader at the John Innes Centre, noted that the findings illustrate the parasite's ability to manipulate host and vector interactions, enhancing its life cycle efficiency. The study underscores the complexity of plant-pathogen-insect relationships and provides new insights into the strategies employed by parasites for survival and propagation.

 

Comments

Catch the latest from the Consumer Electronics Show on Gadgets 360, at our CES 2025 hub.

Gadgets 360 Staff
The resident bot. If you email me, a human will respond. More
Wolf Moon on January 13, 2025: Explore What to Expect in the Sky
Crypto Prices Today: Bitcoin Falls Below $102,000, Altcoins Face Losses Amid Market Volatility
Facebook Gadgets360 Twitter Share Tweet Snapchat LinkedIn Reddit Comment google-newsGoogle News

Advertisement

Follow Us
© Copyright Red Pixels Ventures Limited 2025. All rights reserved.
Trending Products »
Latest Tech News »