Scientists Find Out Why Some Distant Planets Have Clouds of Sands in Their Atmosphere

The study used observations of brown dwarfs made by NASA’s retired Spitzer Space Telescope.

Scientists Find Out Why Some Distant Planets Have Clouds of Sands in Their Atmosphere

Photo Credit: NASA/JPL-Caltech

Spitzer telescope spotted traces of silica clouds in the atmosphere of some brown dwarfs

Highlights
  • The formation of any type of cloud is the same
  • Once the ingredient is trapped and cooled down, clouds are created
  • The same principle is involved in the formation of silica clouds
Advertisement

While clouds are made of water on Earth, their composition is quite different on other distant planets. Scientists have noted that some of these planets have sand clouds of silicates but could not unravel the conditions under which they are formed. Now, a new study has revealed the common trait that is conducive to sand cloud development. Led by researchers at the Western University, the study used observations of brown dwarfs made by NASA's retired Spitzer Space Telescope. Brown dwarfs are celestial bodies having size larger than a planet but smaller than a star.

“Understanding the atmospheres of brown dwarfs and planets where silicate clouds can form can also help us understand what we would see in the atmosphere of a planet that's closer in size and temperature to Earth,” said Stanimir Metchev, a professor of exoplanet studies at Western University in London, Ontario, and co-author of the study.

The formation of any type of cloud is the same where the key ingredient gets heated up to form vapours. Once the ingredient — which can be anything from water, salt, sulphur, or ammonia — is trapped and cooled down, clouds are created.

The same principle is involved in the formation of silica clouds but as rock requires a high temperature to vaporise, such clouds are only found on hot celestial bodies like brown dwarfs. Researchers have used incorporated the brown dwarfs in their study as many of them have atmospheres similar to that of gas-dominated planets like Jupiter.

The Spitzer telescope had already spotted traces of silica clouds in the atmosphere of some brown dwarfs. However, the evidence wasn't concrete enough. In the new study, researchers made use of over 100 of the detections and grouped them in accordance with the temperature of the brown dwarf. This helped them unearth a definitive trait and the temperature range in which silica clouds are formed.

“We had to dig through the Spitzer data to find these brown dwarfs where there was some indication of silicate clouds, and we really didn't know what we would find,” said lead author Genaro Suarez.


We discuss the best of Google I/O 2022 on Orbital, the Gadgets 360 podcast. Orbital is available on Spotify, Gaana, JioSaavn, Google Podcasts, Apple Podcasts, Amazon Music and wherever you get your podcasts.
Affiliate links may be automatically generated - see our ethics statement for details.
Comments

For the latest tech news and reviews, follow Gadgets 360 on X, Facebook, WhatsApp, Threads and Google News. For the latest videos on gadgets and tech, subscribe to our YouTube channel. If you want to know everything about top influencers, follow our in-house Who'sThat360 on Instagram and YouTube.

Redmi K50i 5G Outscores iPhone 13, AnTuTu Benchmark Score Suggests
UAE to Open World’s 1st Medical Metaverse, Patients to Visit as Avatars
Share on Facebook Gadgets360 Twitter Share Tweet Snapchat Share Reddit Comment google-newsGoogle News
 
 

Advertisement

Follow Us

Advertisement

© Copyright Red Pixels Ventures Limited 2024. All rights reserved.
Trending Products »
Latest Tech News »