First-Ever Images of Atoms Moving in Liquid Captured by Transmission Electron Microscope

Transmission electron microscopy (TEM) allows researchers to visualise single atoms, but conventionally requires high vacuum conditions.

First-Ever Images of Atoms Moving in Liquid Captured by Transmission Electron Microscope

Photo Credit: The University of Manchester/Clark et al.

Researchers could monitor the dynamics of platinum adatoms on a monolayer in an aqueous salt solution

Highlights
  • Atoms can be imaged in liquids with a resolution of a few nanometres
  • Transmission electron microscopy (TEM) can visualise atoms in vacuum
  • Researchers have now found a way to image atoms in a liquid substrate
Advertisement

Developing a method to observe the movement of atoms in a liquid, scientists from the University of Manchester have captured — for the first time — images of single atoms swimming in liquid. When a solid and a liquid come in contact with each other, both substances tend to change their configuration. This solid-liquid atomic-scale interaction governs the behaviour of batteries and fuel cells for generating clean energy. In addition, it also it also helps determine the efficiency of clean water generation and plays role in many biological processes.

To get an insight into this interaction, researchers created a nano-petri dish using two-dimensional (2D) materials. They stacked up the material, which included graphene, and trapped platinum atoms in liquid to understand the effects of the presence of liquid on a solid.

atoms liquid imaging tem university of manchester clarke inline atoms  tem  transmission electron microscopy

A single platinum atom in motion in a liquid cell
Photo Credit: The University of Manchester/Clark et al.

“Given the widespread industrial and scientific importance of such behaviour it is truly surprising how much we still have to learn about the fundamentals of how atoms behave on surfaces in contact with liquids. One of the reasons information is missing is the absence of techniques able to yield experimental data for solid-liquid interfaces,” explained professor Sarah Haigh from the University of Manchester. She is also one of the lead authors of the study published in Nature.

In order to analyse or observe individual atoms, scientists use transmission electron microscopy (TEM), one of the few techniques used for the purpose. But, in TEM, a high vacuum environment is required which changes the structure of materials. “In our work we show that misleading information is provided if the atomic behaviour is studied in vacuum instead of using our liquid cells,” said materials engineer Dr Nick Clark.

In the experiment, the team suspended a 2D layer of molybdenum disulphide in liquid and encapsulated by grapheme windows. The design provided controlled liquid layers that in turn helped capture videos showing single atoms swimming in the liquid.

The observations gave a better understanding of the effects of liquid on atomic behavior. Researchers noted that the speed of the atoms increased in the presence of liquid while it also changed their preferred resting sites with respect to the underlying solid. While the team studied the material that is useful in green production hydrogen, the technique can be used in other applications as well.


Is Pixel 6a the best camera phone under Rs. 50,000? We discuss this on Orbital, the Gadgets 360 podcast. Orbital is available on Spotify, Gaana, JioSaavn, Google Podcasts, Apple Podcasts, Amazon Music and wherever you get your podcasts.
Affiliate links may be automatically generated - see our ethics statement for details.
Comments

For the latest tech news and reviews, follow Gadgets 360 on X, Facebook, WhatsApp, Threads and Google News. For the latest videos on gadgets and tech, subscribe to our YouTube channel. If you want to know everything about top influencers, follow our in-house Who'sThat360 on Instagram and YouTube.

US SEC Charges 11 People for Promoting Fraud Crypto Pyramid, Ponzi Scheme
WhatsApp Banned Over 22 Lakh Indian Accounts in June, 632 Grievance Reports Received: Details
Share on Facebook Gadgets360 Twitter Share Tweet Snapchat Share Reddit Comment google-newsGoogle News
 
 

Advertisement

Follow Us

Advertisement

© Copyright Red Pixels Ventures Limited 2024. All rights reserved.
Trending Products »
Latest Tech News »