Photo Credit: NASA/JPL-Caltech/SwRI/MSSS
Recent research, published in Nature, has raised questions about the volcanic processes occurring on Jupiter's moon Io, particularly regarding the absence of a global magma ocean beneath its surface. Data collected by NASA's Juno spacecraft, combined with historical information from the Galileo mission, suggest that Io's interior is more solid than previously believed. This revelation has implications not only for Io but also for our understanding of tidal heating in other celestial bodies.
According to reports, Io is home to around 400 active volcanoes, with its surface covered in extensive lava plains. Without a magma ocean, the molten rock erupting through these volcanoes must originate from localised pockets of melt within the mantle. These pockets are believed to be heated through tidal forces exerted by Jupiter and its neighbouring moons, Europa, Ganymede and Callisto. The constant twisting and squeezing caused by these gravitational interactions generate heat, though it appears insufficient to maintain a fully molten layer.
The findings extend beyond Io, impacting theories about exoplanets in close orbits around M-dwarf stars. Similar to Io's interaction with Jupiter, these exoplanets experience tidal heating. The absence of a global magma ocean on Io challenges the assumption that such exoplanets would host extensive molten layers, prompting scientists to revisit these models.
For the latest tech news and reviews, follow Gadgets 360 on X, Facebook, WhatsApp, Threads and Google News. For the latest videos on gadgets and tech, subscribe to our YouTube channel. If you want to know everything about top influencers, follow our in-house Who'sThat360 on Instagram and YouTube.